Metamath Proof Explorer


Theorem nfixp

Description: Bound-variable hypothesis builder for indexed Cartesian product. Usage of this theorem is discouraged because it depends on ax-13 . Use the weaker nfixpw when possible. (Contributed by Mario Carneiro, 15-Oct-2016) (New usage is discouraged.)

Ref Expression
Hypotheses nfixp.1 _yA
nfixp.2 _yB
Assertion nfixp _yxAB

Proof

Step Hyp Ref Expression
1 nfixp.1 _yA
2 nfixp.2 _yB
3 df-ixp xAB=z|zFnx|xAxAzxB
4 nfcv _yz
5 nftru x
6 nfcvf ¬yy=x_yx
7 6 adantl ¬yy=x_yx
8 1 a1i ¬yy=x_yA
9 7 8 nfeld ¬yy=xyxA
10 5 9 nfabd2 _yx|xA
11 10 mptru _yx|xA
12 4 11 nffn yzFnx|xA
13 df-ral xAzxBxxAzxB
14 4 a1i ¬yy=x_yz
15 14 7 nffvd ¬yy=x_yzx
16 2 a1i ¬yy=x_yB
17 15 16 nfeld ¬yy=xyzxB
18 9 17 nfimd ¬yy=xyxAzxB
19 5 18 nfald2 yxxAzxB
20 19 mptru yxxAzxB
21 13 20 nfxfr yxAzxB
22 12 21 nfan yzFnx|xAxAzxB
23 22 nfab _yz|zFnx|xAxAzxB
24 3 23 nfcxfr _yxAB