Metamath Proof Explorer


Theorem nfttrcld

Description: Bound variable hypothesis builder for transitive closure. Deduction form. (Contributed by Scott Fenton, 26-Oct-2024)

Ref Expression
Hypothesis nfttrcld.1 φ _ x R
Assertion nfttrcld Could not format assertion : No typesetting found for |- ( ph -> F/_ x t++ R ) with typecode |-

Proof

Step Hyp Ref Expression
1 nfttrcld.1 φ _ x R
2 df-ttrcl Could not format t++ R = { <. y , z >. | E. n e. ( _om \ 1o ) E. f ( f Fn suc n /\ ( ( f ` (/) ) = y /\ ( f ` n ) = z ) /\ A. a e. n ( f ` a ) R ( f ` suc a ) ) } : No typesetting found for |- t++ R = { <. y , z >. | E. n e. ( _om \ 1o ) E. f ( f Fn suc n /\ ( ( f ` (/) ) = y /\ ( f ` n ) = z ) /\ A. a e. n ( f ` a ) R ( f ` suc a ) ) } with typecode |-
3 nfv y φ
4 nfv z φ
5 nfv n φ
6 nfcvd φ _ x ω 1 𝑜
7 nfv f φ
8 nfvd φ x f Fn suc n
9 nfvd φ x f = y f n = z
10 nfv a φ
11 nfcvd φ _ x n
12 nfcvd φ _ x f a
13 nfcvd φ _ x f suc a
14 12 1 13 nfbrd φ x f a R f suc a
15 10 11 14 nfraldw φ x a n f a R f suc a
16 8 9 15 nf3and φ x f Fn suc n f = y f n = z a n f a R f suc a
17 7 16 nfexd φ x f f Fn suc n f = y f n = z a n f a R f suc a
18 5 6 17 nfrexd φ x n ω 1 𝑜 f f Fn suc n f = y f n = z a n f a R f suc a
19 3 4 18 nfopabd φ _ x y z | n ω 1 𝑜 f f Fn suc n f = y f n = z a n f a R f suc a
20 2 19 nfcxfrd Could not format ( ph -> F/_ x t++ R ) : No typesetting found for |- ( ph -> F/_ x t++ R ) with typecode |-