Metamath Proof Explorer


Theorem nfunsn

Description: If the restriction of a class to a singleton is not a function, then its value is the empty set. (An artifact of our function value definition.) (Contributed by NM, 8-Aug-2010) (Proof shortened by Andrew Salmon, 22-Oct-2011)

Ref Expression
Assertion nfunsn ¬ Fun F A F A =

Proof

Step Hyp Ref Expression
1 eumo ∃! y A F y * y A F y
2 vex y V
3 2 brresi x F A y x A x F y
4 velsn x A x = A
5 breq1 x = A x F y A F y
6 4 5 sylbi x A x F y A F y
7 6 biimpa x A x F y A F y
8 3 7 sylbi x F A y A F y
9 8 moimi * y A F y * y x F A y
10 1 9 syl ∃! y A F y * y x F A y
11 tz6.12-2 ¬ ∃! y A F y F A =
12 10 11 nsyl4 ¬ F A = * y x F A y
13 12 alrimiv ¬ F A = x * y x F A y
14 relres Rel F A
15 13 14 jctil ¬ F A = Rel F A x * y x F A y
16 dffun6 Fun F A Rel F A x * y x F A y
17 15 16 sylibr ¬ F A = Fun F A
18 17 con1i ¬ Fun F A F A =