Metamath Proof Explorer


Theorem nfwlim

Description: Bound-variable hypothesis builder for the limit class. (Contributed by Scott Fenton, 15-Jun-2018) (Proof shortened by AV, 10-Oct-2021)

Ref Expression
Hypotheses nfwlim.1 _xR
nfwlim.2 _xA
Assertion nfwlim _xWLimRA

Proof

Step Hyp Ref Expression
1 nfwlim.1 _xR
2 nfwlim.2 _xA
3 df-wlim WLimRA=yA|ysupAARy=supPredRAyAR
4 nfcv _xy
5 2 2 1 nfinf _xsupAAR
6 4 5 nfne xysupAAR
7 1 2 4 nfpred _xPredRAy
8 7 2 1 nfsup _xsupPredRAyAR
9 8 nfeq2 xy=supPredRAyAR
10 6 9 nfan xysupAARy=supPredRAyAR
11 10 2 nfrabw _xyA|ysupAARy=supPredRAyAR
12 3 11 nfcxfr _xWLimRA