Metamath Proof Explorer


Theorem nfwlim

Description: Bound-variable hypothesis builder for the limit class. (Contributed by Scott Fenton, 15-Jun-2018) (Proof shortened by AV, 10-Oct-2021)

Ref Expression
Hypotheses nfwlim.1 _ x R
nfwlim.2 _ x A
Assertion nfwlim _ x WLim R A

Proof

Step Hyp Ref Expression
1 nfwlim.1 _ x R
2 nfwlim.2 _ x A
3 df-wlim WLim R A = y A | y sup A A R y = sup Pred R A y A R
4 nfcv _ x y
5 2 2 1 nfinf _ x sup A A R
6 4 5 nfne x y sup A A R
7 1 2 4 nfpred _ x Pred R A y
8 7 2 1 nfsup _ x sup Pred R A y A R
9 8 nfeq2 x y = sup Pred R A y A R
10 6 9 nfan x y sup A A R y = sup Pred R A y A R
11 10 2 nfrabw _ x y A | y sup A A R y = sup Pred R A y A R
12 3 11 nfcxfr _ x WLim R A