Metamath Proof Explorer


Theorem nfwrecsOLD

Description: Obsolete proof of nfwrecs as of 17-Nov-2024. (New usage is discouraged.) (Proof modification is discouraged.) (Contributed by Scott Fenton, 9-Jun-2018)

Ref Expression
Hypotheses nfwrecsOLD.1 _xR
nfwrecsOLD.2 _xA
nfwrecsOLD.3 _xF
Assertion nfwrecsOLD _xwrecsRAF

Proof

Step Hyp Ref Expression
1 nfwrecsOLD.1 _xR
2 nfwrecsOLD.2 _xA
3 nfwrecsOLD.3 _xF
4 dfwrecsOLD wrecsRAF=f|yfFnyyAzyPredRAzyzyfz=FfPredRAz
5 nfv xfFny
6 nfcv _xy
7 6 2 nfss xyA
8 nfcv _xz
9 1 2 8 nfpred _xPredRAz
10 9 6 nfss xPredRAzy
11 6 10 nfralw xzyPredRAzy
12 7 11 nfan xyAzyPredRAzy
13 nfcv _xf
14 13 9 nfres _xfPredRAz
15 3 14 nffv _xFfPredRAz
16 15 nfeq2 xfz=FfPredRAz
17 6 16 nfralw xzyfz=FfPredRAz
18 5 12 17 nf3an xfFnyyAzyPredRAzyzyfz=FfPredRAz
19 18 nfex xyfFnyyAzyPredRAzyzyfz=FfPredRAz
20 19 nfab _xf|yfFnyyAzyPredRAzyzyfz=FfPredRAz
21 20 nfuni _xf|yfFnyyAzyPredRAzyzyfz=FfPredRAz
22 4 21 nfcxfr _xwrecsRAF