Metamath Proof Explorer


Theorem ngpi

Description: The properties of a normed group, which is a group accompanied by a norm. (Contributed by AV, 7-Oct-2021)

Ref Expression
Hypotheses ngpi.v V=BaseW
ngpi.n N=normW
ngpi.m -˙=-W
ngpi.0 0˙=0W
Assertion ngpi WNrmGrpWGrpN:VxVNx=0x=0˙yVNx-˙yNx+Ny

Proof

Step Hyp Ref Expression
1 ngpi.v V=BaseW
2 ngpi.n N=normW
3 ngpi.m -˙=-W
4 ngpi.0 0˙=0W
5 ngpgrp WNrmGrpWGrp
6 1 2 nmf WNrmGrpN:V
7 1 2 4 nmeq0 WNrmGrpxVNx=0x=0˙
8 1 2 3 nmmtri WNrmGrpxVyVNx-˙yNx+Ny
9 8 3expa WNrmGrpxVyVNx-˙yNx+Ny
10 9 ralrimiva WNrmGrpxVyVNx-˙yNx+Ny
11 7 10 jca WNrmGrpxVNx=0x=0˙yVNx-˙yNx+Ny
12 11 ralrimiva WNrmGrpxVNx=0x=0˙yVNx-˙yNx+Ny
13 5 6 12 3jca WNrmGrpWGrpN:VxVNx=0x=0˙yVNx-˙yNx+Ny