Metamath Proof Explorer


Theorem nla0002

Description: Extending a linear order to subsets, the empty set is less than any subset. Note in Alling, p. 3. (Contributed by RP, 28-Nov-2023)

Ref Expression
Hypotheses nla0001.defsslt <˙=ab|aSbSxaybxRy
nla0001.set φAV
nla0002.sset φAS
Assertion nla0002 φ<˙A

Proof

Step Hyp Ref Expression
1 nla0001.defsslt <˙=ab|aSbSxaybxRy
2 nla0001.set φAV
3 nla0002.sset φAS
4 0ex V
5 4 a1i φV
6 0ss S
7 6 a1i φS
8 ral0 xyAxRy
9 8 a1i φxyAxRy
10 7 3 9 3jca φSASxyAxRy
11 1 rp-brsslt <˙AVAVSASxyAxRy
12 5 2 10 11 syl21anbrc φ<˙A