Metamath Proof Explorer


Theorem nla0003

Description: Extending a linear order to subsets, the empty set is greater than any subset. Note in Alling, p. 3. (Contributed by RP, 28-Nov-2023)

Ref Expression
Hypotheses nla0001.defsslt <˙=ab|aSbSxaybxRy
nla0001.set φAV
nla0002.sset φAS
Assertion nla0003 φA<˙

Proof

Step Hyp Ref Expression
1 nla0001.defsslt <˙=ab|aSbSxaybxRy
2 nla0001.set φAV
3 nla0002.sset φAS
4 0ex V
5 4 a1i φV
6 0ss S
7 6 a1i φS
8 ral0 yxAxRy
9 ralcom yxAxRyxAyxRy
10 8 9 mpbi xAyxRy
11 10 a1i φxAyxRy
12 3 7 11 3jca φASSxAyxRy
13 1 rp-brsslt A<˙AVVASSxAyxRy
14 2 5 12 13 syl21anbrc φA<˙