Metamath Proof Explorer


Theorem nlim3

Description: 3 is not a limit ordinal. (Contributed by RP, 13-Dec-2024)

Ref Expression
Assertion nlim3 ¬ Lim 3 𝑜

Proof

Step Hyp Ref Expression
1 2on 2 𝑜 On
2 nlimsuc 2 𝑜 On ¬ Lim suc 2 𝑜
3 df-3o 3 𝑜 = suc 2 𝑜
4 limeq 3 𝑜 = suc 2 𝑜 Lim 3 𝑜 Lim suc 2 𝑜
5 3 4 ax-mp Lim 3 𝑜 Lim suc 2 𝑜
6 2 5 sylnibr 2 𝑜 On ¬ Lim 3 𝑜
7 1 6 ax-mp ¬ Lim 3 𝑜