Database
SUPPLEMENTARY MATERIAL (USERS' MATHBOXES)
Mathbox for Richard Penner
Short Studies
nlim3
Next ⟩
nlim4
Metamath Proof Explorer
Ascii
Unicode
Theorem
nlim3
Description:
3 is not a limit ordinal.
(Contributed by
RP
, 13-Dec-2024)
Ref
Expression
Assertion
nlim3
⊢
¬
Lim
⁡
3
𝑜
Proof
Step
Hyp
Ref
Expression
1
2on
⊢
2
𝑜
∈
On
2
nlimsuc
⊢
2
𝑜
∈
On
→
¬
Lim
⁡
suc
⁡
2
𝑜
3
df-3o
⊢
3
𝑜
=
suc
⁡
2
𝑜
4
limeq
⊢
3
𝑜
=
suc
⁡
2
𝑜
→
Lim
⁡
3
𝑜
↔
Lim
⁡
suc
⁡
2
𝑜
5
3
4
ax-mp
⊢
Lim
⁡
3
𝑜
↔
Lim
⁡
suc
⁡
2
𝑜
6
2
5
sylnibr
⊢
2
𝑜
∈
On
→
¬
Lim
⁡
3
𝑜
7
1
6
ax-mp
⊢
¬
Lim
⁡
3
𝑜