Metamath Proof Explorer


Theorem nlim3

Description: 3 is not a limit ordinal. (Contributed by RP, 13-Dec-2024)

Ref Expression
Assertion nlim3 ¬Lim3𝑜

Proof

Step Hyp Ref Expression
1 2on 2𝑜On
2 nlimsuc 2𝑜On¬Limsuc2𝑜
3 df-3o 3𝑜=suc2𝑜
4 limeq 3𝑜=suc2𝑜Lim3𝑜Limsuc2𝑜
5 3 4 ax-mp Lim3𝑜Limsuc2𝑜
6 2 5 sylnibr 2𝑜On¬Lim3𝑜
7 1 6 ax-mp ¬Lim3𝑜