Metamath Proof Explorer


Theorem nlly2i

Description: Eliminate the neighborhood symbol from nllyi . (Contributed by Mario Carneiro, 2-Mar-2015)

Ref Expression
Assertion nlly2i JN-Locally A UJ PU s𝒫UuJPuusJ𝑡sA

Proof

Step Hyp Ref Expression
1 nllyi JN-Locally A UJ PU sneiJPsUJ𝑡sA
2 simprrl JN-Locally A UJ PU sneiJPsUJ𝑡sA sU
3 velpw s𝒫UsU
4 2 3 sylibr JN-Locally A UJ PU sneiJPsUJ𝑡sA s𝒫U
5 simpl1 JN-Locally A UJ PU sneiJPsUJ𝑡sA JN-Locally A
6 nllytop JN-Locally A JTop
7 5 6 syl JN-Locally A UJ PU sneiJPsUJ𝑡sA JTop
8 simprl JN-Locally A UJ PU sneiJPsUJ𝑡sA sneiJP
9 neii2 JTopsneiJPuJPuus
10 7 8 9 syl2anc JN-Locally A UJ PU sneiJPsUJ𝑡sA uJPuus
11 simprl JN-Locally A UJ PU sneiJPsUJ𝑡sA Puus Pu
12 simpll3 JN-Locally A UJ PU sneiJPsUJ𝑡sA Puus PU
13 snssg PUPuPu
14 12 13 syl JN-Locally A UJ PU sneiJPsUJ𝑡sA Puus PuPu
15 11 14 mpbird JN-Locally A UJ PU sneiJPsUJ𝑡sA Puus Pu
16 simprr JN-Locally A UJ PU sneiJPsUJ𝑡sA Puus us
17 simprrr JN-Locally A UJ PU sneiJPsUJ𝑡sA J𝑡sA
18 17 adantr JN-Locally A UJ PU sneiJPsUJ𝑡sA Puus J𝑡sA
19 15 16 18 3jca JN-Locally A UJ PU sneiJPsUJ𝑡sA Puus PuusJ𝑡sA
20 19 ex JN-Locally A UJ PU sneiJPsUJ𝑡sA PuusPuusJ𝑡sA
21 20 reximdv JN-Locally A UJ PU sneiJPsUJ𝑡sA uJPuusuJPuusJ𝑡sA
22 10 21 mpd JN-Locally A UJ PU sneiJPsUJ𝑡sA uJPuusJ𝑡sA
23 1 4 22 reximssdv JN-Locally A UJ PU s𝒫UuJPuusJ𝑡sA