Metamath Proof Explorer


Theorem nllyss

Description: The "n-locally" predicate respects inclusion. (Contributed by Mario Carneiro, 2-Mar-2015)

Ref Expression
Assertion nllyss ABN-Locally A N-Locally B

Proof

Step Hyp Ref Expression
1 ssel ABj𝑡uAj𝑡uB
2 1 reximdv ABuneijy𝒫xj𝑡uAuneijy𝒫xj𝑡uB
3 2 ralimdv AByxuneijy𝒫xj𝑡uAyxuneijy𝒫xj𝑡uB
4 3 ralimdv ABxjyxuneijy𝒫xj𝑡uAxjyxuneijy𝒫xj𝑡uB
5 4 anim2d ABjTopxjyxuneijy𝒫xj𝑡uAjTopxjyxuneijy𝒫xj𝑡uB
6 isnlly jN-Locally A jTopxjyxuneijy𝒫xj𝑡uA
7 isnlly jN-Locally B jTopxjyxuneijy𝒫xj𝑡uB
8 5 6 7 3imtr4g ABjN-Locally A jN-Locally B
9 8 ssrdv ABN-Locally A N-Locally B