Metamath Proof Explorer


Theorem nm1

Description: The norm of one in a nonzero normed ring. (Contributed by Mario Carneiro, 5-Oct-2015)

Ref Expression
Hypotheses nm1.n N=normR
nm1.u 1˙=1R
Assertion nm1 RNrmRingRNzRingN1˙=1

Proof

Step Hyp Ref Expression
1 nm1.n N=normR
2 nm1.u 1˙=1R
3 eqid AbsValR=AbsValR
4 1 3 nrgabv RNrmRingNAbsValR
5 eqid 0R=0R
6 2 5 nzrnz RNzRing1˙0R
7 3 2 5 abv1z NAbsValR1˙0RN1˙=1
8 4 6 7 syl2an RNrmRingRNzRingN1˙=1