Metamath Proof Explorer


Theorem nmcfnlb

Description: A lower bound of the norm of a continuous linear Hilbert space functional. Theorem 3.5(ii) of Beran p. 99. (Contributed by NM, 14-Feb-2006) (New usage is discouraged.)

Ref Expression
Assertion nmcfnlb T LinFn T ContFn A T A norm fn T norm A

Proof

Step Hyp Ref Expression
1 elin T LinFn ContFn T LinFn T ContFn
2 fveq1 T = if T LinFn ContFn T × 0 T A = if T LinFn ContFn T × 0 A
3 2 fveq2d T = if T LinFn ContFn T × 0 T A = if T LinFn ContFn T × 0 A
4 fveq2 T = if T LinFn ContFn T × 0 norm fn T = norm fn if T LinFn ContFn T × 0
5 4 oveq1d T = if T LinFn ContFn T × 0 norm fn T norm A = norm fn if T LinFn ContFn T × 0 norm A
6 3 5 breq12d T = if T LinFn ContFn T × 0 T A norm fn T norm A if T LinFn ContFn T × 0 A norm fn if T LinFn ContFn T × 0 norm A
7 6 imbi2d T = if T LinFn ContFn T × 0 A T A norm fn T norm A A if T LinFn ContFn T × 0 A norm fn if T LinFn ContFn T × 0 norm A
8 0lnfn × 0 LinFn
9 0cnfn × 0 ContFn
10 elin × 0 LinFn ContFn × 0 LinFn × 0 ContFn
11 8 9 10 mpbir2an × 0 LinFn ContFn
12 11 elimel if T LinFn ContFn T × 0 LinFn ContFn
13 elin if T LinFn ContFn T × 0 LinFn ContFn if T LinFn ContFn T × 0 LinFn if T LinFn ContFn T × 0 ContFn
14 12 13 mpbi if T LinFn ContFn T × 0 LinFn if T LinFn ContFn T × 0 ContFn
15 14 simpli if T LinFn ContFn T × 0 LinFn
16 14 simpri if T LinFn ContFn T × 0 ContFn
17 15 16 nmcfnlbi A if T LinFn ContFn T × 0 A norm fn if T LinFn ContFn T × 0 norm A
18 7 17 dedth T LinFn ContFn A T A norm fn T norm A
19 18 imp T LinFn ContFn A T A norm fn T norm A
20 1 19 sylanbr T LinFn T ContFn A T A norm fn T norm A
21 20 3impa T LinFn T ContFn A T A norm fn T norm A