Metamath Proof Explorer


Theorem nmcn

Description: The norm of a normed group is a continuous function. (Contributed by Mario Carneiro, 4-Oct-2015)

Ref Expression
Hypotheses nmcn.n N=normG
nmcn.j J=TopOpenG
nmcn.k K=topGenran.
Assertion nmcn GNrmGrpNJCnK

Proof

Step Hyp Ref Expression
1 nmcn.n N=normG
2 nmcn.j J=TopOpenG
3 nmcn.k K=topGenran.
4 eqid BaseG=BaseG
5 eqid 0G=0G
6 eqid distG=distG
7 1 4 5 6 nmfval N=xBaseGxdistG0G
8 ngpms GNrmGrpGMetSp
9 ngptps GNrmGrpGTopSp
10 4 2 istps GTopSpJTopOnBaseG
11 9 10 sylib GNrmGrpJTopOnBaseG
12 11 cnmptid GNrmGrpxBaseGxJCnJ
13 ngpgrp GNrmGrpGGrp
14 4 5 grpidcl GGrp0GBaseG
15 13 14 syl GNrmGrp0GBaseG
16 11 11 15 cnmptc GNrmGrpxBaseG0GJCnJ
17 6 2 3 8 11 12 16 cnmpt1ds GNrmGrpxBaseGxdistG0GJCnK
18 7 17 eqeltrid GNrmGrpNJCnK