Metamath Proof Explorer


Theorem nmcoplb

Description: A lower bound for the norm of a continuous linear Hilbert space operator. Theorem 3.5(ii) of Beran p. 99. (Contributed by NM, 7-Feb-2006) (New usage is discouraged.)

Ref Expression
Assertion nmcoplb T LinOp T ContOp A norm T A norm op T norm A

Proof

Step Hyp Ref Expression
1 elin T LinOp ContOp T LinOp T ContOp
2 fveq1 T = if T LinOp ContOp T I T A = if T LinOp ContOp T I A
3 2 fveq2d T = if T LinOp ContOp T I norm T A = norm if T LinOp ContOp T I A
4 fveq2 T = if T LinOp ContOp T I norm op T = norm op if T LinOp ContOp T I
5 4 oveq1d T = if T LinOp ContOp T I norm op T norm A = norm op if T LinOp ContOp T I norm A
6 3 5 breq12d T = if T LinOp ContOp T I norm T A norm op T norm A norm if T LinOp ContOp T I A norm op if T LinOp ContOp T I norm A
7 6 imbi2d T = if T LinOp ContOp T I A norm T A norm op T norm A A norm if T LinOp ContOp T I A norm op if T LinOp ContOp T I norm A
8 idlnop I LinOp
9 idcnop I ContOp
10 elin I LinOp ContOp I LinOp I ContOp
11 8 9 10 mpbir2an I LinOp ContOp
12 11 elimel if T LinOp ContOp T I LinOp ContOp
13 elin if T LinOp ContOp T I LinOp ContOp if T LinOp ContOp T I LinOp if T LinOp ContOp T I ContOp
14 12 13 mpbi if T LinOp ContOp T I LinOp if T LinOp ContOp T I ContOp
15 14 simpli if T LinOp ContOp T I LinOp
16 14 simpri if T LinOp ContOp T I ContOp
17 15 16 nmcoplbi A norm if T LinOp ContOp T I A norm op if T LinOp ContOp T I norm A
18 7 17 dedth T LinOp ContOp A norm T A norm op T norm A
19 18 imp T LinOp ContOp A norm T A norm op T norm A
20 1 19 sylanbr T LinOp T ContOp A norm T A norm op T norm A
21 20 3impa T LinOp T ContOp A norm T A norm op T norm A