Metamath Proof Explorer


Theorem nmoleub2b

Description: The operator norm is the supremum of the value of a linear operator in the open unit ball. (Contributed by Mario Carneiro, 19-Oct-2015)

Ref Expression
Hypotheses nmoleub2.n N=SnormOpT
nmoleub2.v V=BaseS
nmoleub2.l L=normS
nmoleub2.m M=normT
nmoleub2.g G=ScalarS
nmoleub2.w K=BaseG
nmoleub2.s φSNrmModCMod
nmoleub2.t φTNrmModCMod
nmoleub2.f φFSLMHomT
nmoleub2.a φA*
nmoleub2.r φR+
nmoleub2a.5 φK
Assertion nmoleub2b φNFAxVLx<RMFxRA

Proof

Step Hyp Ref Expression
1 nmoleub2.n N=SnormOpT
2 nmoleub2.v V=BaseS
3 nmoleub2.l L=normS
4 nmoleub2.m M=normT
5 nmoleub2.g G=ScalarS
6 nmoleub2.w K=BaseG
7 nmoleub2.s φSNrmModCMod
8 nmoleub2.t φTNrmModCMod
9 nmoleub2.f φFSLMHomT
10 nmoleub2.a φA*
11 nmoleub2.r φR+
12 nmoleub2a.5 φK
13 ltle LxRLx<RLxR
14 idd LxRLx<RLx<R
15 1 2 3 4 5 6 7 8 9 10 11 12 13 14 nmoleub2lem2 φNFAxVLx<RMFxRA