Metamath Proof Explorer
Description: The operator norm is the supremum of the value of a linear operator in
the open unit ball. (Contributed by Mario Carneiro, 19-Oct-2015)
|
|
Ref |
Expression |
|
Hypotheses |
nmoleub2.n |
|
|
|
nmoleub2.v |
|
|
|
nmoleub2.l |
|
|
|
nmoleub2.m |
|
|
|
nmoleub2.g |
|
|
|
nmoleub2.w |
|
|
|
nmoleub2.s |
|
|
|
nmoleub2.t |
|
|
|
nmoleub2.f |
|
|
|
nmoleub2.a |
|
|
|
nmoleub2.r |
|
|
|
nmoleub2a.5 |
|
|
Assertion |
nmoleub2b |
|
Proof
Step |
Hyp |
Ref |
Expression |
1 |
|
nmoleub2.n |
|
2 |
|
nmoleub2.v |
|
3 |
|
nmoleub2.l |
|
4 |
|
nmoleub2.m |
|
5 |
|
nmoleub2.g |
|
6 |
|
nmoleub2.w |
|
7 |
|
nmoleub2.s |
|
8 |
|
nmoleub2.t |
|
9 |
|
nmoleub2.f |
|
10 |
|
nmoleub2.a |
|
11 |
|
nmoleub2.r |
|
12 |
|
nmoleub2a.5 |
|
13 |
|
ltle |
|
14 |
|
idd |
|
15 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14
|
nmoleub2lem2 |
|