Metamath Proof Explorer


Theorem nmopsetretALT

Description: The set in the supremum of the operator norm definition df-nmop is a set of reals. (Contributed by NM, 2-Feb-2006) (New usage is discouraged.) (Proof modification is discouraged.)

Ref Expression
Assertion nmopsetretALT T:x|ynormy1x=normTy

Proof

Step Hyp Ref Expression
1 ffvelcdm T:yTy
2 normcl TynormTy
3 1 2 syl T:ynormTy
4 eleq1 x=normTyxnormTy
5 3 4 imbitrrid x=normTyT:yx
6 5 impcom T:yx=normTyx
7 6 adantrl T:ynormy1x=normTyx
8 7 exp31 T:ynormy1x=normTyx
9 8 rexlimdv T:ynormy1x=normTyx
10 9 abssdv T:x|ynormy1x=normTy