Description: Strong property deduction for a norm. (Contributed by Mario Carneiro, 4-Oct-2015)
Ref | Expression | ||
---|---|---|---|
Hypotheses | nmpropd2.1 | |
|
nmpropd2.2 | |
||
nmpropd2.3 | |
||
nmpropd2.4 | |
||
nmpropd2.5 | |
||
Assertion | nmpropd2 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nmpropd2.1 | |
|
2 | nmpropd2.2 | |
|
3 | nmpropd2.3 | |
|
4 | nmpropd2.4 | |
|
5 | nmpropd2.5 | |
|
6 | 1 2 | eqtr3d | |
7 | 1 | sqxpeqd | |
8 | 7 | reseq2d | |
9 | 5 8 | eqtr3d | |
10 | 2 | sqxpeqd | |
11 | 10 | reseq2d | |
12 | 9 11 | eqtr3d | |
13 | eqidd | |
|
14 | 1 2 4 | grpidpropd | |
15 | 12 13 14 | oveq123d | |
16 | 6 15 | mpteq12dv | |
17 | eqid | |
|
18 | eqid | |
|
19 | eqid | |
|
20 | eqid | |
|
21 | eqid | |
|
22 | 17 18 19 20 21 | nmfval2 | |
23 | 3 22 | syl | |
24 | 1 2 4 | grppropd | |
25 | 3 24 | mpbid | |
26 | eqid | |
|
27 | eqid | |
|
28 | eqid | |
|
29 | eqid | |
|
30 | eqid | |
|
31 | 26 27 28 29 30 | nmfval2 | |
32 | 25 31 | syl | |
33 | 16 23 32 | 3eqtr4d | |