Metamath Proof Explorer


Theorem nmpropd2

Description: Strong property deduction for a norm. (Contributed by Mario Carneiro, 4-Oct-2015)

Ref Expression
Hypotheses nmpropd2.1 φB=BaseK
nmpropd2.2 φB=BaseL
nmpropd2.3 φKGrp
nmpropd2.4 φxByBx+Ky=x+Ly
nmpropd2.5 φdistKB×B=distLB×B
Assertion nmpropd2 φnormK=normL

Proof

Step Hyp Ref Expression
1 nmpropd2.1 φB=BaseK
2 nmpropd2.2 φB=BaseL
3 nmpropd2.3 φKGrp
4 nmpropd2.4 φxByBx+Ky=x+Ly
5 nmpropd2.5 φdistKB×B=distLB×B
6 1 2 eqtr3d φBaseK=BaseL
7 1 sqxpeqd φB×B=BaseK×BaseK
8 7 reseq2d φdistKB×B=distKBaseK×BaseK
9 5 8 eqtr3d φdistLB×B=distKBaseK×BaseK
10 2 sqxpeqd φB×B=BaseL×BaseL
11 10 reseq2d φdistLB×B=distLBaseL×BaseL
12 9 11 eqtr3d φdistKBaseK×BaseK=distLBaseL×BaseL
13 eqidd φa=a
14 1 2 4 grpidpropd φ0K=0L
15 12 13 14 oveq123d φadistKBaseK×BaseK0K=adistLBaseL×BaseL0L
16 6 15 mpteq12dv φaBaseKadistKBaseK×BaseK0K=aBaseLadistLBaseL×BaseL0L
17 eqid normK=normK
18 eqid BaseK=BaseK
19 eqid 0K=0K
20 eqid distK=distK
21 eqid distKBaseK×BaseK=distKBaseK×BaseK
22 17 18 19 20 21 nmfval2 KGrpnormK=aBaseKadistKBaseK×BaseK0K
23 3 22 syl φnormK=aBaseKadistKBaseK×BaseK0K
24 1 2 4 grppropd φKGrpLGrp
25 3 24 mpbid φLGrp
26 eqid normL=normL
27 eqid BaseL=BaseL
28 eqid 0L=0L
29 eqid distL=distL
30 eqid distLBaseL×BaseL=distLBaseL×BaseL
31 26 27 28 29 30 nmfval2 LGrpnormL=aBaseLadistLBaseL×BaseL0L
32 25 31 syl φnormL=aBaseLadistLBaseL×BaseL0L
33 16 23 32 3eqtr4d φnormK=normL