Metamath Proof Explorer


Theorem nmrpcl

Description: The norm of a nonzero element is a positive real. (Contributed by Mario Carneiro, 4-Oct-2015)

Ref Expression
Hypotheses nmf.x X=BaseG
nmf.n N=normG
nmeq0.z 0˙=0G
Assertion nmrpcl GNrmGrpAXA0˙NA+

Proof

Step Hyp Ref Expression
1 nmf.x X=BaseG
2 nmf.n N=normG
3 nmeq0.z 0˙=0G
4 1 2 nmcl GNrmGrpAXNA
5 4 3adant3 GNrmGrpAXA0˙NA
6 1 2 nmge0 GNrmGrpAX0NA
7 6 3adant3 GNrmGrpAXA0˙0NA
8 1 2 3 nmne0 GNrmGrpAXA0˙NA0
9 5 7 8 ne0gt0d GNrmGrpAXA0˙0<NA
10 5 9 elrpd GNrmGrpAXA0˙NA+