Description: A positive integer is odd iff its predecessor divided by 2 is a positive integer. (Contributed by AV, 28-Jun-2021) (Proof shortened by AV, 10-Jul-2022)
Ref | Expression | ||
---|---|---|---|
Assertion | nn0oddm1d2 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nn0z | |
|
2 | oddp1d2 | |
|
3 | 1 2 | syl | |
4 | peano2nn0 | |
|
5 | 4 | nn0red | |
6 | 2rp | |
|
7 | 6 | a1i | |
8 | nn0re | |
|
9 | 1red | |
|
10 | nn0ge0 | |
|
11 | 0le1 | |
|
12 | 11 | a1i | |
13 | 8 9 10 12 | addge0d | |
14 | 5 7 13 | divge0d | |
15 | 14 | anim1ci | |
16 | elnn0z | |
|
17 | 15 16 | sylibr | |
18 | 17 | ex | |
19 | nn0z | |
|
20 | 18 19 | impbid1 | |
21 | nn0ob | |
|
22 | 3 20 21 | 3bitrd | |