Metamath Proof Explorer


Theorem nn1m1nn

Description: Every positive integer is one or a successor. (Contributed by Mario Carneiro, 16-May-2014)

Ref Expression
Assertion nn1m1nn AA=1A1

Proof

Step Hyp Ref Expression
1 orc x=1x=1x1
2 1cnd x=11
3 1 2 2thd x=1x=1x11
4 eqeq1 x=yx=1y=1
5 oveq1 x=yx1=y1
6 5 eleq1d x=yx1y1
7 4 6 orbi12d x=yx=1x1y=1y1
8 eqeq1 x=y+1x=1y+1=1
9 oveq1 x=y+1x1=y+1-1
10 9 eleq1d x=y+1x1y+1-1
11 8 10 orbi12d x=y+1x=1x1y+1=1y+1-1
12 eqeq1 x=Ax=1A=1
13 oveq1 x=Ax1=A1
14 13 eleq1d x=Ax1A1
15 12 14 orbi12d x=Ax=1x1A=1A1
16 ax-1cn 1
17 nncn yy
18 pncan y1y+1-1=y
19 17 16 18 sylancl yy+1-1=y
20 id yy
21 19 20 eqeltrd yy+1-1
22 21 olcd yy+1=1y+1-1
23 22 a1d yy=1y1y+1=1y+1-1
24 3 7 11 15 16 23 nnind AA=1A1