Description: Closure of addition of positive integers, proved by induction on the second addend. (Contributed by NM, 12-Jan-1997)
Ref | Expression | ||
---|---|---|---|
Assertion | nnaddcl | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | oveq2 | |
|
2 | 1 | eleq1d | |
3 | 2 | imbi2d | |
4 | oveq2 | |
|
5 | 4 | eleq1d | |
6 | 5 | imbi2d | |
7 | oveq2 | |
|
8 | 7 | eleq1d | |
9 | 8 | imbi2d | |
10 | oveq2 | |
|
11 | 10 | eleq1d | |
12 | 11 | imbi2d | |
13 | peano2nn | |
|
14 | peano2nn | |
|
15 | nncn | |
|
16 | nncn | |
|
17 | ax-1cn | |
|
18 | addass | |
|
19 | 17 18 | mp3an3 | |
20 | 15 16 19 | syl2an | |
21 | 20 | eleq1d | |
22 | 14 21 | imbitrid | |
23 | 22 | expcom | |
24 | 23 | a2d | |
25 | 3 6 9 12 13 24 | nnind | |
26 | 25 | impcom | |