Metamath Proof Explorer


Theorem nnaddcl

Description: Closure of addition of positive integers, proved by induction on the second addend. (Contributed by NM, 12-Jan-1997)

Ref Expression
Assertion nnaddcl ABA+B

Proof

Step Hyp Ref Expression
1 oveq2 x=1A+x=A+1
2 1 eleq1d x=1A+xA+1
3 2 imbi2d x=1AA+xAA+1
4 oveq2 x=yA+x=A+y
5 4 eleq1d x=yA+xA+y
6 5 imbi2d x=yAA+xAA+y
7 oveq2 x=y+1A+x=A+y+1
8 7 eleq1d x=y+1A+xA+y+1
9 8 imbi2d x=y+1AA+xAA+y+1
10 oveq2 x=BA+x=A+B
11 10 eleq1d x=BA+xA+B
12 11 imbi2d x=BAA+xAA+B
13 peano2nn AA+1
14 peano2nn A+yA+y+1
15 nncn AA
16 nncn yy
17 ax-1cn 1
18 addass Ay1A+y+1=A+y+1
19 17 18 mp3an3 AyA+y+1=A+y+1
20 15 16 19 syl2an AyA+y+1=A+y+1
21 20 eleq1d AyA+y+1A+y+1
22 14 21 imbitrid AyA+yA+y+1
23 22 expcom yAA+yA+y+1
24 23 a2d yAA+yAA+y+1
25 3 6 9 12 13 24 nnind BAA+B
26 25 impcom ABA+B