Metamath Proof Explorer


Theorem nnadjuALT

Description: Shorter proof of nnadju using ax-rep . (Contributed by Paul Chapman, 11-Apr-2009) (Revised by Mario Carneiro, 6-Feb-2013) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Assertion nnadjuALT AωBωcardA⊔︀B=A+𝑜B

Proof

Step Hyp Ref Expression
1 nnon AωAOn
2 nnon BωBOn
3 onadju AOnBOnA+𝑜BA⊔︀B
4 1 2 3 syl2an AωBωA+𝑜BA⊔︀B
5 carden2b A+𝑜BA⊔︀BcardA+𝑜B=cardA⊔︀B
6 4 5 syl AωBωcardA+𝑜B=cardA⊔︀B
7 nnacl AωBωA+𝑜Bω
8 cardnn A+𝑜BωcardA+𝑜B=A+𝑜B
9 7 8 syl AωBωcardA+𝑜B=A+𝑜B
10 6 9 eqtr3d AωBωcardA⊔︀B=A+𝑜B