Description: The cardinal and ordinal sums of finite ordinals are equal. For a shorter proof using ax-rep , see nnadjuALT . (Contributed by Paul Chapman, 11-Apr-2009) (Revised by Mario Carneiro, 6-Feb-2013) Avoid ax-rep . (Revised by BTernaryTau, 2-Jul-2024)
Ref | Expression | ||
---|---|---|---|
Assertion | nnadju | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | djueq2 | |
|
2 | oveq2 | |
|
3 | 1 2 | breq12d | |
4 | 3 | imbi2d | |
5 | djueq2 | |
|
6 | oveq2 | |
|
7 | 5 6 | breq12d | |
8 | djueq2 | |
|
9 | oveq2 | |
|
10 | 8 9 | breq12d | |
11 | djueq2 | |
|
12 | oveq2 | |
|
13 | 11 12 | breq12d | |
14 | dju0en | |
|
15 | nna0 | |
|
16 | 14 15 | breqtrrd | |
17 | 1oex | |
|
18 | djuassen | |
|
19 | 17 18 | mp3an3 | |
20 | enrefg | |
|
21 | nnord | |
|
22 | ordirr | |
|
23 | 21 22 | syl | |
24 | dju1en | |
|
25 | 23 24 | mpdan | |
26 | djuen | |
|
27 | 20 25 26 | syl2an | |
28 | entr | |
|
29 | 19 27 28 | syl2anc | |
30 | 29 | ensymd | |
31 | 17 | enref | |
32 | djuen | |
|
33 | 31 32 | mpan2 | |
34 | 33 | a1i | |
35 | nnacl | |
|
36 | nnord | |
|
37 | ordirr | |
|
38 | 35 36 37 | 3syl | |
39 | dju1en | |
|
40 | 35 38 39 | syl2anc | |
41 | nnasuc | |
|
42 | 40 41 | breqtrrd | |
43 | 34 42 | jctird | |
44 | entr | |
|
45 | 43 44 | syl6 | |
46 | entr | |
|
47 | 30 45 46 | syl6an | |
48 | 47 | expcom | |
49 | 7 10 13 16 48 | finds2 | |
50 | 4 49 | vtoclga | |
51 | 50 | impcom | |
52 | carden2b | |
|
53 | 51 52 | syl | |
54 | nnacl | |
|
55 | cardnn | |
|
56 | 54 55 | syl | |
57 | 53 56 | eqtrd | |