Metamath Proof Explorer


Theorem nnmcan

Description: Cancellation law for multiplication of natural numbers. (Contributed by NM, 26-Oct-1995) (Revised by Mario Carneiro, 15-Nov-2014)

Ref Expression
Assertion nnmcan A ω B ω C ω A A 𝑜 B = A 𝑜 C B = C

Proof

Step Hyp Ref Expression
1 3anrot A ω B ω C ω B ω C ω A ω
2 nnmword B ω C ω A ω A B C A 𝑜 B A 𝑜 C
3 1 2 sylanb A ω B ω C ω A B C A 𝑜 B A 𝑜 C
4 3anrev A ω B ω C ω C ω B ω A ω
5 nnmword C ω B ω A ω A C B A 𝑜 C A 𝑜 B
6 4 5 sylanb A ω B ω C ω A C B A 𝑜 C A 𝑜 B
7 3 6 anbi12d A ω B ω C ω A B C C B A 𝑜 B A 𝑜 C A 𝑜 C A 𝑜 B
8 7 bicomd A ω B ω C ω A A 𝑜 B A 𝑜 C A 𝑜 C A 𝑜 B B C C B
9 eqss A 𝑜 B = A 𝑜 C A 𝑜 B A 𝑜 C A 𝑜 C A 𝑜 B
10 eqss B = C B C C B
11 8 9 10 3bitr4g A ω B ω C ω A A 𝑜 B = A 𝑜 C B = C