Metamath Proof Explorer


Theorem nnmword

Description: Weak ordering property of ordinal multiplication. (Contributed by Mario Carneiro, 17-Nov-2014)

Ref Expression
Assertion nnmword AωBωCωCABC𝑜AC𝑜B

Proof

Step Hyp Ref Expression
1 iba CBABAC
2 nnmord BωAωCωBACC𝑜BC𝑜A
3 2 3com12 AωBωCωBACC𝑜BC𝑜A
4 1 3 sylan9bbr AωBωCωCBAC𝑜BC𝑜A
5 4 notbid AωBωCωC¬BA¬C𝑜BC𝑜A
6 simpl1 AωBωCωCAω
7 nnon AωAOn
8 6 7 syl AωBωCωCAOn
9 simpl2 AωBωCωCBω
10 nnon BωBOn
11 9 10 syl AωBωCωCBOn
12 ontri1 AOnBOnAB¬BA
13 8 11 12 syl2anc AωBωCωCAB¬BA
14 simpl3 AωBωCωCCω
15 nnmcl CωAωC𝑜Aω
16 14 6 15 syl2anc AωBωCωCC𝑜Aω
17 nnon C𝑜AωC𝑜AOn
18 16 17 syl AωBωCωCC𝑜AOn
19 nnmcl CωBωC𝑜Bω
20 14 9 19 syl2anc AωBωCωCC𝑜Bω
21 nnon C𝑜BωC𝑜BOn
22 20 21 syl AωBωCωCC𝑜BOn
23 ontri1 C𝑜AOnC𝑜BOnC𝑜AC𝑜B¬C𝑜BC𝑜A
24 18 22 23 syl2anc AωBωCωCC𝑜AC𝑜B¬C𝑜BC𝑜A
25 5 13 24 3bitr4d AωBωCωCABC𝑜AC𝑜B