Metamath Proof Explorer


Theorem nnmcan

Description: Cancellation law for multiplication of natural numbers. (Contributed by NM, 26-Oct-1995) (Revised by Mario Carneiro, 15-Nov-2014)

Ref Expression
Assertion nnmcan AωBωCωAA𝑜B=A𝑜CB=C

Proof

Step Hyp Ref Expression
1 3anrot AωBωCωBωCωAω
2 nnmword BωCωAωABCA𝑜BA𝑜C
3 1 2 sylanb AωBωCωABCA𝑜BA𝑜C
4 3anrev AωBωCωCωBωAω
5 nnmword CωBωAωACBA𝑜CA𝑜B
6 4 5 sylanb AωBωCωACBA𝑜CA𝑜B
7 3 6 anbi12d AωBωCωABCCBA𝑜BA𝑜CA𝑜CA𝑜B
8 7 bicomd AωBωCωAA𝑜BA𝑜CA𝑜CA𝑜BBCCB
9 eqss A𝑜B=A𝑜CA𝑜BA𝑜CA𝑜CA𝑜B
10 eqss B=CBCCB
11 8 9 10 3bitr4g AωBωCωAA𝑜B=A𝑜CB=C