Metamath Proof Explorer


Theorem nnmsucr

Description: Multiplication with successor. Exercise 16 of Enderton p. 82. (Contributed by NM, 21-Sep-1995) (Proof shortened by Andrew Salmon, 22-Oct-2011)

Ref Expression
Assertion nnmsucr AωBωsucA𝑜B=A𝑜B+𝑜B

Proof

Step Hyp Ref Expression
1 oveq2 x=BsucA𝑜x=sucA𝑜B
2 oveq2 x=BA𝑜x=A𝑜B
3 id x=Bx=B
4 2 3 oveq12d x=BA𝑜x+𝑜x=A𝑜B+𝑜B
5 1 4 eqeq12d x=BsucA𝑜x=A𝑜x+𝑜xsucA𝑜B=A𝑜B+𝑜B
6 5 imbi2d x=BAωsucA𝑜x=A𝑜x+𝑜xAωsucA𝑜B=A𝑜B+𝑜B
7 oveq2 x=sucA𝑜x=sucA𝑜
8 oveq2 x=A𝑜x=A𝑜
9 id x=x=
10 8 9 oveq12d x=A𝑜x+𝑜x=A𝑜+𝑜
11 7 10 eqeq12d x=sucA𝑜x=A𝑜x+𝑜xsucA𝑜=A𝑜+𝑜
12 oveq2 x=ysucA𝑜x=sucA𝑜y
13 oveq2 x=yA𝑜x=A𝑜y
14 id x=yx=y
15 13 14 oveq12d x=yA𝑜x+𝑜x=A𝑜y+𝑜y
16 12 15 eqeq12d x=ysucA𝑜x=A𝑜x+𝑜xsucA𝑜y=A𝑜y+𝑜y
17 oveq2 x=sucysucA𝑜x=sucA𝑜sucy
18 oveq2 x=sucyA𝑜x=A𝑜sucy
19 id x=sucyx=sucy
20 18 19 oveq12d x=sucyA𝑜x+𝑜x=A𝑜sucy+𝑜sucy
21 17 20 eqeq12d x=sucysucA𝑜x=A𝑜x+𝑜xsucA𝑜sucy=A𝑜sucy+𝑜sucy
22 peano2 AωsucAω
23 nnm0 sucAωsucA𝑜=
24 22 23 syl AωsucA𝑜=
25 nnm0 AωA𝑜=
26 24 25 eqtr4d AωsucA𝑜=A𝑜
27 peano1 ω
28 nnmcl AωωA𝑜ω
29 27 28 mpan2 AωA𝑜ω
30 nna0 A𝑜ωA𝑜+𝑜=A𝑜
31 29 30 syl AωA𝑜+𝑜=A𝑜
32 26 31 eqtr4d AωsucA𝑜=A𝑜+𝑜
33 oveq1 sucA𝑜y=A𝑜y+𝑜ysucA𝑜y+𝑜sucA=A𝑜y+𝑜y+𝑜sucA
34 peano2b AωsucAω
35 nnmsuc sucAωyωsucA𝑜sucy=sucA𝑜y+𝑜sucA
36 34 35 sylanb AωyωsucA𝑜sucy=sucA𝑜y+𝑜sucA
37 nnmcl AωyωA𝑜yω
38 peano2b yωsucyω
39 nnaass A𝑜yωAωsucyωA𝑜y+𝑜A+𝑜sucy=A𝑜y+𝑜A+𝑜sucy
40 38 39 syl3an3b A𝑜yωAωyωA𝑜y+𝑜A+𝑜sucy=A𝑜y+𝑜A+𝑜sucy
41 37 40 syl3an1 AωyωAωyωA𝑜y+𝑜A+𝑜sucy=A𝑜y+𝑜A+𝑜sucy
42 41 3expb AωyωAωyωA𝑜y+𝑜A+𝑜sucy=A𝑜y+𝑜A+𝑜sucy
43 42 anidms AωyωA𝑜y+𝑜A+𝑜sucy=A𝑜y+𝑜A+𝑜sucy
44 nnmsuc AωyωA𝑜sucy=A𝑜y+𝑜A
45 44 oveq1d AωyωA𝑜sucy+𝑜sucy=A𝑜y+𝑜A+𝑜sucy
46 nnaass A𝑜yωyωsucAωA𝑜y+𝑜y+𝑜sucA=A𝑜y+𝑜y+𝑜sucA
47 34 46 syl3an3b A𝑜yωyωAωA𝑜y+𝑜y+𝑜sucA=A𝑜y+𝑜y+𝑜sucA
48 37 47 syl3an1 AωyωyωAωA𝑜y+𝑜y+𝑜sucA=A𝑜y+𝑜y+𝑜sucA
49 48 3expb AωyωyωAωA𝑜y+𝑜y+𝑜sucA=A𝑜y+𝑜y+𝑜sucA
50 49 an42s AωyωAωyωA𝑜y+𝑜y+𝑜sucA=A𝑜y+𝑜y+𝑜sucA
51 50 anidms AωyωA𝑜y+𝑜y+𝑜sucA=A𝑜y+𝑜y+𝑜sucA
52 nnacom AωyωA+𝑜y=y+𝑜A
53 suceq A+𝑜y=y+𝑜AsucA+𝑜y=sucy+𝑜A
54 52 53 syl AωyωsucA+𝑜y=sucy+𝑜A
55 nnasuc AωyωA+𝑜sucy=sucA+𝑜y
56 nnasuc yωAωy+𝑜sucA=sucy+𝑜A
57 56 ancoms Aωyωy+𝑜sucA=sucy+𝑜A
58 54 55 57 3eqtr4d AωyωA+𝑜sucy=y+𝑜sucA
59 58 oveq2d AωyωA𝑜y+𝑜A+𝑜sucy=A𝑜y+𝑜y+𝑜sucA
60 51 59 eqtr4d AωyωA𝑜y+𝑜y+𝑜sucA=A𝑜y+𝑜A+𝑜sucy
61 43 45 60 3eqtr4d AωyωA𝑜sucy+𝑜sucy=A𝑜y+𝑜y+𝑜sucA
62 36 61 eqeq12d AωyωsucA𝑜sucy=A𝑜sucy+𝑜sucysucA𝑜y+𝑜sucA=A𝑜y+𝑜y+𝑜sucA
63 33 62 imbitrrid AωyωsucA𝑜y=A𝑜y+𝑜ysucA𝑜sucy=A𝑜sucy+𝑜sucy
64 63 expcom yωAωsucA𝑜y=A𝑜y+𝑜ysucA𝑜sucy=A𝑜sucy+𝑜sucy
65 11 16 21 32 64 finds2 xωAωsucA𝑜x=A𝑜x+𝑜x
66 6 65 vtoclga BωAωsucA𝑜B=A𝑜B+𝑜B
67 66 impcom AωBωsucA𝑜B=A𝑜B+𝑜B