Metamath Proof Explorer


Theorem nnmsucr

Description: Multiplication with successor. Exercise 16 of Enderton p. 82. (Contributed by NM, 21-Sep-1995) (Proof shortened by Andrew Salmon, 22-Oct-2011)

Ref Expression
Assertion nnmsucr A ω B ω suc A 𝑜 B = A 𝑜 B + 𝑜 B

Proof

Step Hyp Ref Expression
1 oveq2 x = B suc A 𝑜 x = suc A 𝑜 B
2 oveq2 x = B A 𝑜 x = A 𝑜 B
3 id x = B x = B
4 2 3 oveq12d x = B A 𝑜 x + 𝑜 x = A 𝑜 B + 𝑜 B
5 1 4 eqeq12d x = B suc A 𝑜 x = A 𝑜 x + 𝑜 x suc A 𝑜 B = A 𝑜 B + 𝑜 B
6 5 imbi2d x = B A ω suc A 𝑜 x = A 𝑜 x + 𝑜 x A ω suc A 𝑜 B = A 𝑜 B + 𝑜 B
7 oveq2 x = suc A 𝑜 x = suc A 𝑜
8 oveq2 x = A 𝑜 x = A 𝑜
9 id x = x =
10 8 9 oveq12d x = A 𝑜 x + 𝑜 x = A 𝑜 + 𝑜
11 7 10 eqeq12d x = suc A 𝑜 x = A 𝑜 x + 𝑜 x suc A 𝑜 = A 𝑜 + 𝑜
12 oveq2 x = y suc A 𝑜 x = suc A 𝑜 y
13 oveq2 x = y A 𝑜 x = A 𝑜 y
14 id x = y x = y
15 13 14 oveq12d x = y A 𝑜 x + 𝑜 x = A 𝑜 y + 𝑜 y
16 12 15 eqeq12d x = y suc A 𝑜 x = A 𝑜 x + 𝑜 x suc A 𝑜 y = A 𝑜 y + 𝑜 y
17 oveq2 x = suc y suc A 𝑜 x = suc A 𝑜 suc y
18 oveq2 x = suc y A 𝑜 x = A 𝑜 suc y
19 id x = suc y x = suc y
20 18 19 oveq12d x = suc y A 𝑜 x + 𝑜 x = A 𝑜 suc y + 𝑜 suc y
21 17 20 eqeq12d x = suc y suc A 𝑜 x = A 𝑜 x + 𝑜 x suc A 𝑜 suc y = A 𝑜 suc y + 𝑜 suc y
22 peano2 A ω suc A ω
23 nnm0 suc A ω suc A 𝑜 =
24 22 23 syl A ω suc A 𝑜 =
25 nnm0 A ω A 𝑜 =
26 24 25 eqtr4d A ω suc A 𝑜 = A 𝑜
27 peano1 ω
28 nnmcl A ω ω A 𝑜 ω
29 27 28 mpan2 A ω A 𝑜 ω
30 nna0 A 𝑜 ω A 𝑜 + 𝑜 = A 𝑜
31 29 30 syl A ω A 𝑜 + 𝑜 = A 𝑜
32 26 31 eqtr4d A ω suc A 𝑜 = A 𝑜 + 𝑜
33 oveq1 suc A 𝑜 y = A 𝑜 y + 𝑜 y suc A 𝑜 y + 𝑜 suc A = A 𝑜 y + 𝑜 y + 𝑜 suc A
34 peano2b A ω suc A ω
35 nnmsuc suc A ω y ω suc A 𝑜 suc y = suc A 𝑜 y + 𝑜 suc A
36 34 35 sylanb A ω y ω suc A 𝑜 suc y = suc A 𝑜 y + 𝑜 suc A
37 nnmcl A ω y ω A 𝑜 y ω
38 peano2b y ω suc y ω
39 nnaass A 𝑜 y ω A ω suc y ω A 𝑜 y + 𝑜 A + 𝑜 suc y = A 𝑜 y + 𝑜 A + 𝑜 suc y
40 38 39 syl3an3b A 𝑜 y ω A ω y ω A 𝑜 y + 𝑜 A + 𝑜 suc y = A 𝑜 y + 𝑜 A + 𝑜 suc y
41 37 40 syl3an1 A ω y ω A ω y ω A 𝑜 y + 𝑜 A + 𝑜 suc y = A 𝑜 y + 𝑜 A + 𝑜 suc y
42 41 3expb A ω y ω A ω y ω A 𝑜 y + 𝑜 A + 𝑜 suc y = A 𝑜 y + 𝑜 A + 𝑜 suc y
43 42 anidms A ω y ω A 𝑜 y + 𝑜 A + 𝑜 suc y = A 𝑜 y + 𝑜 A + 𝑜 suc y
44 nnmsuc A ω y ω A 𝑜 suc y = A 𝑜 y + 𝑜 A
45 44 oveq1d A ω y ω A 𝑜 suc y + 𝑜 suc y = A 𝑜 y + 𝑜 A + 𝑜 suc y
46 nnaass A 𝑜 y ω y ω suc A ω A 𝑜 y + 𝑜 y + 𝑜 suc A = A 𝑜 y + 𝑜 y + 𝑜 suc A
47 34 46 syl3an3b A 𝑜 y ω y ω A ω A 𝑜 y + 𝑜 y + 𝑜 suc A = A 𝑜 y + 𝑜 y + 𝑜 suc A
48 37 47 syl3an1 A ω y ω y ω A ω A 𝑜 y + 𝑜 y + 𝑜 suc A = A 𝑜 y + 𝑜 y + 𝑜 suc A
49 48 3expb A ω y ω y ω A ω A 𝑜 y + 𝑜 y + 𝑜 suc A = A 𝑜 y + 𝑜 y + 𝑜 suc A
50 49 an42s A ω y ω A ω y ω A 𝑜 y + 𝑜 y + 𝑜 suc A = A 𝑜 y + 𝑜 y + 𝑜 suc A
51 50 anidms A ω y ω A 𝑜 y + 𝑜 y + 𝑜 suc A = A 𝑜 y + 𝑜 y + 𝑜 suc A
52 nnacom A ω y ω A + 𝑜 y = y + 𝑜 A
53 suceq A + 𝑜 y = y + 𝑜 A suc A + 𝑜 y = suc y + 𝑜 A
54 52 53 syl A ω y ω suc A + 𝑜 y = suc y + 𝑜 A
55 nnasuc A ω y ω A + 𝑜 suc y = suc A + 𝑜 y
56 nnasuc y ω A ω y + 𝑜 suc A = suc y + 𝑜 A
57 56 ancoms A ω y ω y + 𝑜 suc A = suc y + 𝑜 A
58 54 55 57 3eqtr4d A ω y ω A + 𝑜 suc y = y + 𝑜 suc A
59 58 oveq2d A ω y ω A 𝑜 y + 𝑜 A + 𝑜 suc y = A 𝑜 y + 𝑜 y + 𝑜 suc A
60 51 59 eqtr4d A ω y ω A 𝑜 y + 𝑜 y + 𝑜 suc A = A 𝑜 y + 𝑜 A + 𝑜 suc y
61 43 45 60 3eqtr4d A ω y ω A 𝑜 suc y + 𝑜 suc y = A 𝑜 y + 𝑜 y + 𝑜 suc A
62 36 61 eqeq12d A ω y ω suc A 𝑜 suc y = A 𝑜 suc y + 𝑜 suc y suc A 𝑜 y + 𝑜 suc A = A 𝑜 y + 𝑜 y + 𝑜 suc A
63 33 62 syl5ibr A ω y ω suc A 𝑜 y = A 𝑜 y + 𝑜 y suc A 𝑜 suc y = A 𝑜 suc y + 𝑜 suc y
64 63 expcom y ω A ω suc A 𝑜 y = A 𝑜 y + 𝑜 y suc A 𝑜 suc y = A 𝑜 suc y + 𝑜 suc y
65 11 16 21 32 64 finds2 x ω A ω suc A 𝑜 x = A 𝑜 x + 𝑜 x
66 6 65 vtoclga B ω A ω suc A 𝑜 B = A 𝑜 B + 𝑜 B
67 66 impcom A ω B ω suc A 𝑜 B = A 𝑜 B + 𝑜 B