Metamath Proof Explorer


Theorem nnmwordi

Description: Weak ordering property of multiplication. (Contributed by Mario Carneiro, 17-Nov-2014)

Ref Expression
Assertion nnmwordi AωBωCωABC𝑜AC𝑜B

Proof

Step Hyp Ref Expression
1 nnmword AωBωCωCABC𝑜AC𝑜B
2 1 biimpd AωBωCωCABC𝑜AC𝑜B
3 2 ex AωBωCωCABC𝑜AC𝑜B
4 nnord CωOrdC
5 ord0eln0 OrdCCC
6 5 necon2bbid OrdCC=¬C
7 4 6 syl CωC=¬C
8 7 3ad2ant3 AωBωCωC=¬C
9 ssid
10 nnm0r Aω𝑜A=
11 10 adantr AωBω𝑜A=
12 nnm0r Bω𝑜B=
13 12 adantl AωBω𝑜B=
14 11 13 sseq12d AωBω𝑜A𝑜B
15 9 14 mpbiri AωBω𝑜A𝑜B
16 oveq1 C=C𝑜A=𝑜A
17 oveq1 C=C𝑜B=𝑜B
18 16 17 sseq12d C=C𝑜AC𝑜B𝑜A𝑜B
19 15 18 syl5ibrcom AωBωC=C𝑜AC𝑜B
20 19 3adant3 AωBωCωC=C𝑜AC𝑜B
21 8 20 sylbird AωBωCω¬CC𝑜AC𝑜B
22 21 a1dd AωBωCω¬CABC𝑜AC𝑜B
23 3 22 pm2.61d AωBωCωABC𝑜AC𝑜B