Metamath Proof Explorer


Theorem nnn1suc

Description: A positive integer that is not 1 is a successor of some other positive integer. (Contributed by Steven Nguyen, 19-Aug-2023)

Ref Expression
Assertion nnn1suc AA1xx+1=A

Proof

Step Hyp Ref Expression
1 neeq1 y=1y111
2 eqeq2 y=1x+1=yx+1=1
3 2 rexbidv y=1xx+1=yxx+1=1
4 1 3 imbi12d y=1y1xx+1=y11xx+1=1
5 neeq1 y=zy1z1
6 eqeq2 y=zx+1=yx+1=z
7 6 rexbidv y=zxx+1=yxx+1=z
8 5 7 imbi12d y=zy1xx+1=yz1xx+1=z
9 neeq1 y=z+1y1z+11
10 eqeq2 y=z+1x+1=yx+1=z+1
11 10 rexbidv y=z+1xx+1=yxx+1=z+1
12 9 11 imbi12d y=z+1y1xx+1=yz+11xx+1=z+1
13 neeq1 y=Ay1A1
14 eqeq2 y=Ax+1=yx+1=A
15 14 rexbidv y=Axx+1=yxx+1=A
16 13 15 imbi12d y=Ay1xx+1=yA1xx+1=A
17 df-ne 11¬1=1
18 eqid 1=1
19 18 pm2.24i ¬1=1xx+1=1
20 17 19 sylbi 11xx+1=1
21 id zz
22 oveq1 x=zx+1=z+1
23 22 eqeq1d x=zx+1=z+1z+1=z+1
24 23 adantl zx=zx+1=z+1z+1=z+1
25 eqidd zz+1=z+1
26 21 24 25 rspcedvd zxx+1=z+1
27 26 2a1d zz1xx+1=zz+11xx+1=z+1
28 4 8 12 16 20 27 nnind AA1xx+1=A
29 28 imp AA1xx+1=A