Metamath Proof Explorer


Theorem nnullss

Description: A nonempty class (even if proper) has a nonempty subset. (Contributed by NM, 23-Aug-2003)

Ref Expression
Assertion nnullss AxxAx

Proof

Step Hyp Ref Expression
1 n0 AyyA
2 vex yV
3 2 snss yAyA
4 2 snnz y
5 vsnex yV
6 sseq1 x=yxAyA
7 neeq1 x=yxy
8 6 7 anbi12d x=yxAxyAy
9 5 8 spcev yAyxxAx
10 4 9 mpan2 yAxxAx
11 3 10 sylbi yAxxAx
12 11 exlimiv yyAxxAx
13 1 12 sylbi AxxAx