Metamath Proof Explorer


Theorem nonsq

Description: Any integer strictly between two adjacent squares has an irrational square root. (Contributed by Stefan O'Rear, 15-Sep-2014)

Ref Expression
Assertion nonsq A0B0B2<AA<B+12¬A

Proof

Step Hyp Ref Expression
1 nn0z B0B
2 1 ad2antlr A0B0B2<AA<B+12B
3 simprl A0B0B2<AA<B+12B2<A
4 nn0re A0A
5 4 ad2antrr A0B0B2<AA<B+12A
6 5 recnd A0B0B2<AA<B+12A
7 6 sqsqrtd A0B0B2<AA<B+12A2=A
8 3 7 breqtrrd A0B0B2<AA<B+12B2<A2
9 nn0re B0B
10 9 ad2antlr A0B0B2<AA<B+12B
11 nn0ge0 A00A
12 11 ad2antrr A0B0B2<AA<B+120A
13 5 12 resqrtcld A0B0B2<AA<B+12A
14 nn0ge0 B00B
15 14 ad2antlr A0B0B2<AA<B+120B
16 5 12 sqrtge0d A0B0B2<AA<B+120A
17 10 13 15 16 lt2sqd A0B0B2<AA<B+12B<AB2<A2
18 8 17 mpbird A0B0B2<AA<B+12B<A
19 simprr A0B0B2<AA<B+12A<B+12
20 7 19 eqbrtrd A0B0B2<AA<B+12A2<B+12
21 peano2re BB+1
22 10 21 syl A0B0B2<AA<B+12B+1
23 peano2nn0 B0B+10
24 nn0ge0 B+100B+1
25 23 24 syl B00B+1
26 25 ad2antlr A0B0B2<AA<B+120B+1
27 13 22 16 26 lt2sqd A0B0B2<AA<B+12A<B+1A2<B+12
28 20 27 mpbird A0B0B2<AA<B+12A<B+1
29 btwnnz BB<AA<B+1¬A
30 2 18 28 29 syl3anc A0B0B2<AA<B+12¬A
31 nn0z A0A
32 31 ad2antrr A0B0B2<AA<B+12A
33 zsqrtelqelz AAA
34 33 ex AAA
35 32 34 syl A0B0B2<AA<B+12AA
36 30 35 mtod A0B0B2<AA<B+12¬A