Description: Any integer strictly between two adjacent squares has an irrational square root. (Contributed by Stefan O'Rear, 15-Sep-2014)
Ref | Expression | ||
---|---|---|---|
Assertion | nonsq | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nn0z | |
|
2 | 1 | ad2antlr | |
3 | simprl | |
|
4 | nn0re | |
|
5 | 4 | ad2antrr | |
6 | 5 | recnd | |
7 | 6 | sqsqrtd | |
8 | 3 7 | breqtrrd | |
9 | nn0re | |
|
10 | 9 | ad2antlr | |
11 | nn0ge0 | |
|
12 | 11 | ad2antrr | |
13 | 5 12 | resqrtcld | |
14 | nn0ge0 | |
|
15 | 14 | ad2antlr | |
16 | 5 12 | sqrtge0d | |
17 | 10 13 15 16 | lt2sqd | |
18 | 8 17 | mpbird | |
19 | simprr | |
|
20 | 7 19 | eqbrtrd | |
21 | peano2re | |
|
22 | 10 21 | syl | |
23 | peano2nn0 | |
|
24 | nn0ge0 | |
|
25 | 23 24 | syl | |
26 | 25 | ad2antlr | |
27 | 13 22 16 26 | lt2sqd | |
28 | 20 27 | mpbird | |
29 | btwnnz | |
|
30 | 2 18 28 29 | syl3anc | |
31 | nn0z | |
|
32 | 31 | ad2antrr | |
33 | zsqrtelqelz | |
|
34 | 33 | ex | |
35 | 32 34 | syl | |
36 | 30 35 | mtod | |