Metamath Proof Explorer


Theorem norm-ii

Description: Triangle inequality for norms. Theorem 3.3(ii) of Beran p. 97. (Contributed by NM, 10-Mar-2006) (New usage is discouraged.)

Ref Expression
Assertion norm-ii ABnormA+BnormA+normB

Proof

Step Hyp Ref Expression
1 fvoveq1 A=ifAA0normA+B=normifAA0+B
2 fveq2 A=ifAA0normA=normifAA0
3 2 oveq1d A=ifAA0normA+normB=normifAA0+normB
4 1 3 breq12d A=ifAA0normA+BnormA+normBnormifAA0+BnormifAA0+normB
5 oveq2 B=ifBB0ifAA0+B=ifAA0+ifBB0
6 5 fveq2d B=ifBB0normifAA0+B=normifAA0+ifBB0
7 fveq2 B=ifBB0normB=normifBB0
8 7 oveq2d B=ifBB0normifAA0+normB=normifAA0+normifBB0
9 6 8 breq12d B=ifBB0normifAA0+BnormifAA0+normBnormifAA0+ifBB0normifAA0+normifBB0
10 ifhvhv0 ifAA0
11 ifhvhv0 ifBB0
12 10 11 norm-ii-i normifAA0+ifBB0normifAA0+normifBB0
13 4 9 12 dedth2h ABnormA+BnormA+normB