Metamath Proof Explorer


Theorem nosepdm

Description: The first place two surreals differ is an element of the larger of their domains. (Contributed by Scott Fenton, 24-Nov-2021)

Ref Expression
Assertion nosepdm A No B No A B x On | A x B x dom A dom B

Proof

Step Hyp Ref Expression
1 sltso < s Or No
2 sotrine < s Or No A No B No A B A < s B B < s A
3 1 2 mpan A No B No A B A < s B B < s A
4 nosepdmlem A No B No A < s B x On | A x B x dom A dom B
5 4 3expa A No B No A < s B x On | A x B x dom A dom B
6 simplr A No B No B < s A B No
7 simpll A No B No B < s A A No
8 simpr A No B No B < s A B < s A
9 nosepdmlem B No A No B < s A x On | B x A x dom B dom A
10 6 7 8 9 syl3anc A No B No B < s A x On | B x A x dom B dom A
11 necom A x B x B x A x
12 11 rabbii x On | A x B x = x On | B x A x
13 12 inteqi x On | A x B x = x On | B x A x
14 uncom dom A dom B = dom B dom A
15 10 13 14 3eltr4g A No B No B < s A x On | A x B x dom A dom B
16 5 15 jaodan A No B No A < s B B < s A x On | A x B x dom A dom B
17 16 ex A No B No A < s B B < s A x On | A x B x dom A dom B
18 3 17 sylbid A No B No A B x On | A x B x dom A dom B
19 18 3impia A No B No A B x On | A x B x dom A dom B