Metamath Proof Explorer


Theorem noxpordpred

Description: Next we calculate the predecessor class of the relationship. (Contributed by Scott Fenton, 19-Aug-2024)

Ref Expression
Hypotheses noxpord.1 R = a b | a L b R b
noxpord.2 S = x y | x No × No y No × No 1 st x R 1 st y 1 st x = 1 st y 2 nd x R 2 nd y 2 nd x = 2 nd y x y
Assertion noxpordpred A No B No Pred S No × No A B = L A R A A × L B R B B A B

Proof

Step Hyp Ref Expression
1 noxpord.1 R = a b | a L b R b
2 noxpord.2 S = x y | x No × No y No × No 1 st x R 1 st y 1 st x = 1 st y 2 nd x R 2 nd y 2 nd x = 2 nd y x y
3 2 xpord2pred A No B No Pred S No × No A B = Pred R No A A × Pred R No B B A B
4 1 lrrecpred A No Pred R No A = L A R A
5 4 adantr A No B No Pred R No A = L A R A
6 5 uneq1d A No B No Pred R No A A = L A R A A
7 1 lrrecpred B No Pred R No B = L B R B
8 7 adantl A No B No Pred R No B = L B R B
9 8 uneq1d A No B No Pred R No B B = L B R B B
10 6 9 xpeq12d A No B No Pred R No A A × Pred R No B B = L A R A A × L B R B B
11 10 difeq1d A No B No Pred R No A A × Pred R No B B A B = L A R A A × L B R B B A B
12 3 11 eqtrd A No B No Pred S No × No A B = L A R A A × L B R B B A B