Metamath Proof Explorer


Theorem ntrclselnel2

Description: If (pseudo-)interior and (pseudo-)closure functions are related by the duality operator then there is an equivalence between membership in interior of the complement of a set and non-membership in the closure of the set. (Contributed by RP, 28-May-2021)

Ref Expression
Hypotheses ntrcls.o O = i V k 𝒫 i 𝒫 i j 𝒫 i i k i j
ntrcls.d D = O B
ntrcls.r φ I D K
ntrcls.x φ X B
ntrcls.s φ S 𝒫 B
Assertion ntrclselnel2 φ X I B S ¬ X K S

Proof

Step Hyp Ref Expression
1 ntrcls.o O = i V k 𝒫 i 𝒫 i j 𝒫 i i k i j
2 ntrcls.d D = O B
3 ntrcls.r φ I D K
4 ntrcls.x φ X B
5 ntrcls.s φ S 𝒫 B
6 1 2 3 ntrclsnvobr φ K D I
7 1 2 6 4 5 ntrclselnel1 φ X K S ¬ X I B S
8 7 con2bid φ X I B S ¬ X K S