Metamath Proof Explorer


Theorem ntrclsiex

Description: If (pseudo-)interior and (pseudo-)closure functions are related by the duality operator then those functions are maps of subsets to subsets. (Contributed by RP, 21-May-2021)

Ref Expression
Hypotheses ntrcls.o O = i V k 𝒫 i 𝒫 i j 𝒫 i i k i j
ntrcls.d D = O B
ntrcls.r φ I D K
Assertion ntrclsiex φ I 𝒫 B 𝒫 B

Proof

Step Hyp Ref Expression
1 ntrcls.o O = i V k 𝒫 i 𝒫 i j 𝒫 i i k i j
2 ntrcls.d D = O B
3 ntrcls.r φ I D K
4 1 2 3 ntrclsf1o φ D : 𝒫 B 𝒫 B 1-1 onto 𝒫 B 𝒫 B
5 f1orel D : 𝒫 B 𝒫 B 1-1 onto 𝒫 B 𝒫 B Rel D
6 4 5 syl φ Rel D
7 releldm Rel D I D K I dom D
8 6 3 7 syl2anc φ I dom D
9 f1odm D : 𝒫 B 𝒫 B 1-1 onto 𝒫 B 𝒫 B dom D = 𝒫 B 𝒫 B
10 4 9 syl φ dom D = 𝒫 B 𝒫 B
11 8 10 eleqtrd φ I 𝒫 B 𝒫 B