Database
SUPPLEMENTARY MATERIAL (USERS' MATHBOXES)
Mathbox for Richard Penner
Exploring Topology via Seifert and Threlfall
Generic Pseudoclosure Spaces, Pseudointerior Spaces, and Pseudoneighborhoods
ntrneineine1
Metamath Proof Explorer
Description: If (pseudo-)interior and (pseudo-)neighborhood functions are related
by the operator, F , then conditions equal to claiming that for
every point, at not all subsets are (pseudo-)neighborboods hold
equally. (Contributed by RP , 1-Jun-2021)
Ref
Expression
Hypotheses
ntrnei.o
⊢ O = i ∈ V , j ∈ V ⟼ k ∈ 𝒫 j i ⟼ l ∈ j ⟼ m ∈ i | l ∈ k ⁡ m
ntrnei.f
⊢ F = 𝒫 B O B
ntrnei.r
⊢ φ → I F N
Assertion
ntrneineine1
⊢ φ → ∀ x ∈ B ∃ s ∈ 𝒫 B ¬ x ∈ I ⁡ s ↔ ∀ x ∈ B N ⁡ x ≠ 𝒫 B
Proof
Step
Hyp
Ref
Expression
1
ntrnei.o
⊢ O = i ∈ V , j ∈ V ⟼ k ∈ 𝒫 j i ⟼ l ∈ j ⟼ m ∈ i | l ∈ k ⁡ m
2
ntrnei.f
⊢ F = 𝒫 B O B
3
ntrnei.r
⊢ φ → I F N
4
3
adantr
⊢ φ ∧ x ∈ B → I F N
5
simpr
⊢ φ ∧ x ∈ B → x ∈ B
6
1 2 4 5
ntrneineine1lem
⊢ φ ∧ x ∈ B → ∃ s ∈ 𝒫 B ¬ x ∈ I ⁡ s ↔ N ⁡ x ≠ 𝒫 B
7
6
ralbidva
⊢ φ → ∀ x ∈ B ∃ s ∈ 𝒫 B ¬ x ∈ I ⁡ s ↔ ∀ x ∈ B N ⁡ x ≠ 𝒫 B