Metamath Proof Explorer


Theorem nulssgt

Description: The empty set is greater than any set of surreals. (Contributed by Scott Fenton, 8-Dec-2021)

Ref Expression
Assertion nulssgt A𝒫NoAs

Proof

Step Hyp Ref Expression
1 id A𝒫NoA𝒫No
2 0ex V
3 2 a1i A𝒫NoV
4 elpwi A𝒫NoANo
5 0ss No
6 5 a1i A𝒫NoNo
7 noel ¬y
8 7 pm2.21i yx<sy
9 8 3ad2ant3 A𝒫NoxAyx<sy
10 1 3 4 6 9 ssltd A𝒫NoAs