Metamath Proof Explorer


Theorem numclwwlk1lem2

Description: The set of double loops of length N on vertex X and the set of closed walks of length less by 2 on X combined with the neighbors of X are equinumerous. (Contributed by Alexander van der Vekens, 6-Jul-2018) (Revised by AV, 29-May-2021) (Revised by AV, 31-Jul-2022) (Proof shortened by AV, 3-Nov-2022)

Ref Expression
Hypotheses extwwlkfab.v V=VtxG
extwwlkfab.c C=vV,n2wvClWWalksNOnGn|wn2=v
extwwlkfab.f F=XClWWalksNOnGN2
Assertion numclwwlk1lem2 GUSGraphXVN3XCNF×GNeighbVtxX

Proof

Step Hyp Ref Expression
1 extwwlkfab.v V=VtxG
2 extwwlkfab.c C=vV,n2wvClWWalksNOnGn|wn2=v
3 extwwlkfab.f F=XClWWalksNOnGN2
4 oveq1 x=uxprefixN2=uprefixN2
5 fveq1 x=uxN1=uN1
6 4 5 opeq12d x=uxprefixN2xN1=uprefixN2uN1
7 6 cbvmptv xXCNxprefixN2xN1=uXCNuprefixN2uN1
8 1 2 3 7 numclwwlk1lem2f1o GUSGraphXVN3xXCNxprefixN2xN1:XCN1-1 ontoF×GNeighbVtxX
9 ovex XCNV
10 9 f1oen xXCNxprefixN2xN1:XCN1-1 ontoF×GNeighbVtxXXCNF×GNeighbVtxX
11 8 10 syl GUSGraphXVN3XCNF×GNeighbVtxX