Metamath Proof Explorer


Theorem numclwwlk1lem2f1o

Description: T is a 1-1 onto function. (Contributed by Alexander van der Vekens, 26-Sep-2018) (Revised by AV, 29-May-2021) (Revised by AV, 6-Mar-2022)

Ref Expression
Hypotheses extwwlkfab.v V=VtxG
extwwlkfab.c C=vV,n2wvClWWalksNOnGn|wn2=v
extwwlkfab.f F=XClWWalksNOnGN2
numclwwlk.t T=uXCNuprefixN2uN1
Assertion numclwwlk1lem2f1o GUSGraphXVN3T:XCN1-1 ontoF×GNeighbVtxX

Proof

Step Hyp Ref Expression
1 extwwlkfab.v V=VtxG
2 extwwlkfab.c C=vV,n2wvClWWalksNOnGn|wn2=v
3 extwwlkfab.f F=XClWWalksNOnGN2
4 numclwwlk.t T=uXCNuprefixN2uN1
5 1 2 3 4 numclwwlk1lem2f1 GUSGraphXVN3T:XCN1-1F×GNeighbVtxX
6 1 2 3 4 numclwwlk1lem2fo GUSGraphXVN3T:XCNontoF×GNeighbVtxX
7 df-f1o T:XCN1-1 ontoF×GNeighbVtxXT:XCN1-1F×GNeighbVtxXT:XCNontoF×GNeighbVtxX
8 5 6 7 sylanbrc GUSGraphXVN3T:XCN1-1 ontoF×GNeighbVtxX