Metamath Proof Explorer


Theorem numclwwlk3lem1

Description: Lemma 2 for numclwwlk3 . (Contributed by Alexander van der Vekens, 26-Aug-2018) (Proof shortened by AV, 23-Jan-2022)

Ref Expression
Assertion numclwwlk3lem1 KYN2KN2-Y+KY=K1Y+KN2

Proof

Step Hyp Ref Expression
1 uznn0sub N2N20
2 expcl KN20KN2
3 1 2 sylan2 KN2KN2
4 3 3adant2 KYN2KN2
5 simp2 KYN2Y
6 mulcl KYKY
7 6 3adant3 KYN2KY
8 4 5 7 subadd23d KYN2KN2-Y+KY=KN2+KY-Y
9 7 5 subcld KYN2KYY
10 4 9 addcomd KYN2KN2+KY-Y=KY-Y+KN2
11 simp1 KYN2K
12 11 5 mulsubfacd KYN2KYY=K1Y
13 12 oveq1d KYN2KY-Y+KN2=K1Y+KN2
14 8 10 13 3eqtrd KYN2KN2-Y+KY=K1Y+KN2