Metamath Proof Explorer


Theorem numclwwlk7lem

Description: Lemma for numclwwlk7 , frgrreggt1 and frgrreg : If a finite, nonempty friendship graph is K-regular, the K is a nonnegative integer. (Contributed by AV, 3-Jun-2021)

Ref Expression
Hypothesis numclwwlk7lem.v V=VtxG
Assertion numclwwlk7lem GRegUSGraphKGFriendGraphVVFinK0

Proof

Step Hyp Ref Expression
1 numclwwlk7lem.v V=VtxG
2 1 finrusgrfusgr GRegUSGraphKVFinGFinUSGraph
3 2 ad2ant2rl GRegUSGraphKGFriendGraphVVFinGFinUSGraph
4 simpll GRegUSGraphKGFriendGraphVVFinGRegUSGraphK
5 simprl GRegUSGraphKGFriendGraphVVFinV
6 1 frusgrnn0 GFinUSGraphGRegUSGraphKVK0
7 3 4 5 6 syl3anc GRegUSGraphKGFriendGraphVVFinK0