Database ELEMENTARY NUMBER THEORY Elementary prime number theory Properties of the canonical representation of a rational numexp  
				
		 
		
			
		 
		Description:   Elevating to a nonnegative power commutes with canonical numerator.
     Similar to numsq  , extended to nonnegative exponents.  (Contributed by Steven Nguyen , 5-Apr-2023) 
		
			
				
					Ref 
					Expression 
				 
				
					Assertion 
					numexp    ⊢    A  ∈   ℚ     ∧   N  ∈    ℕ   0       →    numer  ⁡   A  N     =    numer  ⁡  A   N           
				 
			
		 
		
				Proof 
				
					
						Step 
						Hyp 
						Ref 
						Expression 
					 
						
							1 
								
							 
							numdenexp   ⊢    A  ∈   ℚ     ∧   N  ∈    ℕ   0       →     numer  ⁡   A  N     =    numer  ⁡  A   N      ∧    denom  ⁡   A  N     =    denom  ⁡  A   N            
						
							2 
								1 
							 
							simpld   ⊢    A  ∈   ℚ     ∧   N  ∈    ℕ   0       →    numer  ⁡   A  N     =    numer  ⁡  A   N