Metamath Proof Explorer


Theorem numexp

Description: numsq extended to nonnegative exponents. (Contributed by Steven Nguyen, 5-Apr-2023)

Ref Expression
Assertion numexp A N 0 numer A N = numer A N

Proof

Step Hyp Ref Expression
1 numdenexp A N 0 numer A N = numer A N denom A N = denom A N
2 1 simpld A N 0 numer A N = numer A N