Metamath Proof Explorer


Theorem numexp

Description: numsq extended to nonnegative exponents. (Contributed by Steven Nguyen, 5-Apr-2023)

Ref Expression
Assertion numexp AN0numerAN=numerAN

Proof

Step Hyp Ref Expression
1 numdenexp AN0numerAN=numerANdenomAN=denomAN
2 1 simpld AN0numerAN=numerAN