Metamath Proof Explorer


Theorem nv2

Description: A vector plus itself is two times the vector. (Contributed by NM, 9-Feb-2008) (New usage is discouraged.)

Ref Expression
Hypotheses nvdi.1 X=BaseSetU
nvdi.2 G=+vU
nvdi.4 S=𝑠OLDU
Assertion nv2 UNrmCVecAXAGA=2SA

Proof

Step Hyp Ref Expression
1 nvdi.1 X=BaseSetU
2 nvdi.2 G=+vU
3 nvdi.4 S=𝑠OLDU
4 eqid 1stU=1stU
5 4 nvvc UNrmCVec1stUCVecOLD
6 2 vafval G=1st1stU
7 3 smfval S=2nd1stU
8 1 2 bafval X=ranG
9 6 7 8 vc2OLD 1stUCVecOLDAXAGA=2SA
10 5 9 sylan UNrmCVecAXAGA=2SA