Metamath Proof Explorer


Theorem nvo00

Description: Two ways to express a zero operator. (Contributed by NM, 27-Nov-2007) (New usage is discouraged.)

Ref Expression
Hypothesis nvo00.1 X=BaseSetU
Assertion nvo00 UNrmCVecT:XYT=X×ZranT=Z

Proof

Step Hyp Ref Expression
1 nvo00.1 X=BaseSetU
2 ffn T:XYTFnX
3 eqid 0vecU=0vecU
4 1 3 nvzcl UNrmCVec0vecUX
5 4 ne0d UNrmCVecX
6 fconst5 TFnXXT=X×ZranT=Z
7 2 5 6 syl2anr UNrmCVecT:XYT=X×ZranT=Z