Description: A unit is nonzero in any nonzero ring. (Contributed by Mario Carneiro, 6-Oct-2015)
Ref | Expression | ||
---|---|---|---|
Hypotheses | nzrunit.1 | |
|
nzrunit.2 | |
||
Assertion | nzrunit | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nzrunit.1 | |
|
2 | nzrunit.2 | |
|
3 | eqid | |
|
4 | 3 2 | nzrnz | |
5 | nzrring | |
|
6 | 1 2 3 | 0unit | |
7 | 6 | necon3bbid | |
8 | 5 7 | syl | |
9 | 4 8 | mpbird | |
10 | eleq1 | |
|
11 | 10 | notbid | |
12 | 9 11 | syl5ibrcom | |
13 | 12 | necon2ad | |
14 | 13 | imp | |