Metamath Proof Explorer


Theorem nzrunit

Description: A unit is nonzero in any nonzero ring. (Contributed by Mario Carneiro, 6-Oct-2015)

Ref Expression
Hypotheses nzrunit.1 U=UnitR
nzrunit.2 0˙=0R
Assertion nzrunit RNzRingAUA0˙

Proof

Step Hyp Ref Expression
1 nzrunit.1 U=UnitR
2 nzrunit.2 0˙=0R
3 eqid 1R=1R
4 3 2 nzrnz RNzRing1R0˙
5 nzrring RNzRingRRing
6 1 2 3 0unit RRing0˙U1R=0˙
7 6 necon3bbid RRing¬0˙U1R0˙
8 5 7 syl RNzRing¬0˙U1R0˙
9 4 8 mpbird RNzRing¬0˙U
10 eleq1 A=0˙AU0˙U
11 10 notbid A=0˙¬AU¬0˙U
12 9 11 syl5ibrcom RNzRingA=0˙¬AU
13 12 necon2ad RNzRingAUA0˙
14 13 imp RNzRingAUA0˙