Metamath Proof Explorer


Theorem oaf1o

Description: Left addition by a constant is a bijection from ordinals to ordinals greater than the constant. (Contributed by Mario Carneiro, 30-May-2015)

Ref Expression
Assertion oaf1o AOnxOnA+𝑜x:On1-1 ontoOnA

Proof

Step Hyp Ref Expression
1 oacl AOnxOnA+𝑜xOn
2 oaword1 AOnxOnAA+𝑜x
3 ontri1 AOnA+𝑜xOnAA+𝑜x¬A+𝑜xA
4 1 3 syldan AOnxOnAA+𝑜x¬A+𝑜xA
5 2 4 mpbid AOnxOn¬A+𝑜xA
6 1 5 eldifd AOnxOnA+𝑜xOnA
7 6 ralrimiva AOnxOnA+𝑜xOnA
8 simpl AOnyOnAAOn
9 eldifi yOnAyOn
10 9 adantl AOnyOnAyOn
11 eldifn yOnA¬yA
12 11 adantl AOnyOnA¬yA
13 ontri1 AOnyOnAy¬yA
14 10 13 syldan AOnyOnAAy¬yA
15 12 14 mpbird AOnyOnAAy
16 oawordeu AOnyOnAy∃!xOnA+𝑜x=y
17 8 10 15 16 syl21anc AOnyOnA∃!xOnA+𝑜x=y
18 eqcom A+𝑜x=yy=A+𝑜x
19 18 reubii ∃!xOnA+𝑜x=y∃!xOny=A+𝑜x
20 17 19 sylib AOnyOnA∃!xOny=A+𝑜x
21 20 ralrimiva AOnyOnA∃!xOny=A+𝑜x
22 eqid xOnA+𝑜x=xOnA+𝑜x
23 22 f1ompt xOnA+𝑜x:On1-1 ontoOnAxOnA+𝑜xOnAyOnA∃!xOny=A+𝑜x
24 7 21 23 sylanbrc AOnxOnA+𝑜x:On1-1 ontoOnA