Metamath Proof Explorer


Theorem oaun3lem3

Description: The class of all ordinal sums of elements from two ordinals is an ordinal. Lemma for oaun3 . (Contributed by RP, 13-Feb-2025)

Ref Expression
Assertion oaun3lem3 AOnBOnx|aAbBx=a+𝑜bOn

Proof

Step Hyp Ref Expression
1 oaun3lem1 AOnBOnOrdx|aAbBx=a+𝑜b
2 oacl AOnBOnA+𝑜BOn
3 oaun3lem2 AOnBOnx|aAbBx=a+𝑜bA+𝑜B
4 2 3 ssexd AOnBOnx|aAbBx=a+𝑜bV
5 elon2 x|aAbBx=a+𝑜bOnOrdx|aAbBx=a+𝑜bx|aAbBx=a+𝑜bV
6 1 4 5 sylanbrc AOnBOnx|aAbBx=a+𝑜bOn