Metamath Proof Explorer


Theorem obs2ocv

Description: The double orthocomplement (closure) of an orthonormal basis is the whole space. (Contributed by Mario Carneiro, 23-Oct-2015)

Ref Expression
Hypotheses obs2ocv.o ˙=ocvW
obs2ocv.v V=BaseW
Assertion obs2ocv BOBasisW˙˙B=V

Proof

Step Hyp Ref Expression
1 obs2ocv.o ˙=ocvW
2 obs2ocv.v V=BaseW
3 eqid 0W=0W
4 3 1 obsocv BOBasisW˙B=0W
5 4 fveq2d BOBasisW˙˙B=˙0W
6 obsrcl BOBasisWWPreHil
7 2 1 3 ocvz WPreHil˙0W=V
8 6 7 syl BOBasisW˙0W=V
9 5 8 eqtrd BOBasisW˙˙B=V